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ABSTRACT 

A dispersion relation for a computer-simulated plasma in which the effects of 
discreteness in space and time are treated exactly is derived. In the limit that the mesh 
spacing and the time step go to zero independently, the well-known results associated 
with a collisionless plasma are obtained. Nonphysical Landau damping of a wave by 
particles traveling at phase velocities associated with frequency “aliases” and numerical 
dispersion associated with a finite time step are easily avoided with small enough time 
steps. Discreteness in space plus interpolation between mesh points leads to modes 
which can be represented as sums of backward and forward traveling sinusoidal waves. 
The total resonant interaction of the particles with a mode is the sum of their interactions 
with each of the components. For a Maxwellian distribution the forward traveling 
components lead to damping, but the backward traveling components lead to growth. 
Consequently, numerically unstable modes can occur in a Maxwellian plasma. 

I. INTR~DUC~~N 

The simulation of a plasma by integrating the equations of motion of a large 
number of particles has been made practical with the modern advances in computer 
technology. One-dimensional problems can be handled quite adequately using 
these techniques, [l] and useful results are being obtained from 2- and 
3dimensional codes [2, 31. 

In solving the equations of motion numerically, certain difficulties arise which 
must be dealt with. One of these problems is that of “enhanced noise,” which 
arises because one is trying to simulate a system of lOBo particles with IO*. The 
fluctuations generated by correlations are thus greatly magnified over the situation 
in a real plasma. This aspect of the situation has been treated elsewhere [2] and 
no further discussion will be directed towards it. 

There are, however, further difficulties which must be analyzed, those associated 
with discreteness in space and time. The differential equations which describe the 
plasma must be replaced with difference equations. The process of going from 
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differential equations to finite differences is not unique, and a variety of methods 
for numerically “integrating” equations have been given. In general the systems 
described by these finite difference equations are very similar to the real systems 
they approximate, i.e., generally the various modes of the computer system can 
be placed into one-to-one correspondence with those of the real system, but certain 
properties of the mode may be different. The conversion of a weakly damped mode 
to a growing mode is a not-uncommon occurrence, and is referred to as numerical 
instability [4]. Such difficulties are usually easy to recognize, and are quickly 
corrected by changing the finite difference scheme. Other modifications also may 
occur, and, although they are not as spectacular, they may affect the accuracy of 
the simulation substantially. A small change in frequency is usually of little 
consequence as is a small amount of “numerical damping.” There are, however, 
cases where added “numerical damping’” must be avoided, or, at the very least, 
the deviations need be known in order to properly interpret the results. 

This information is, of course, contained in the linear dispersion relation for 
waves in the system. Since equivalent dispersion relations for genuine plasmas are 
available for comparison, analysis of the dispersion relation of the computer 
system is currently the most effective approach to evaluating the accuracy of the 
simulation. 

For concreteness and simplicity the derivation of the dispersion relation for a 
particular one-dimensional electrostatic code will be given. The method, however, 
is quite general and the extension to more complex systems is straightforward. 
The code we choose to analyze is a PIC code (Particle-In-Cell) developed by Morse 
and Nielson [l]. The results may, also, be applied almost immediately to the CIC 
codes (Cloud-In-Cell) developed by C. K. Birdsall [2]. 

II. A TYPICAL FINITE DIFFERENCE SCHEME 

A set of one-dimensional macro-particles (infinite sheets having a given charge 
per unit area and mass per unit area) are allowed to move within a region of length 
L. An equal amount of charge per unit area is assumed uniformly distributed 
throughout the region and does not move. Assume at time t, the position and 
velocities of all macro-particles are known. To find the positions and velocities one 
time-step, T, later, the following procedure is used. 

A set of N mesh points are defined in the region 0 < x < L. Thus, if D is the 
spacing between the mesh points, we have L = ND. At these points a surface 
charge density is defined 

4) = (44 CNW, II = 1, 2 ,..., N. (1) 
The q is the charge within an area A on one of the sheets, and CN(n) is the effective 
number of charge sheets at the mesh point n. 
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The number W(n) for each of the mesh points is arrived at by going through 
the list of particle positions, x&), and by distributing the charge number “1” that 
it carries between the two mesh points that it currently lies between. Suppose for 
a particular particle the mesh point index, n’, is determined such that n’D < x < 
(n’ + 1) D. The amount of charge attributed to mesh point n’ is then 

Mn’) = (dA)(n’ + 1 - x/D), (2) 

while the amount given to the mesh point (n’ + 1) is 

da(n’ + 1) = (q/AX--n’ + x/D). (3) 

The sum of these contributions is “1” times q/A, but, as the sheet moves from 
x = n’D to x = (a’ + 1) D, the charge density at n’D decreases uniformly while 
the charge density at (n’ + 1) D increases uniformly. The charge density u(n) is 
thus the sum of all the contributions of the sheets near enough to contribute. 
A constant background charge is also distributed uniformly over the mesh points. 

These surface-charge densities are then used to calculate a value for the electric 
field at the points x = (n + 4) D, which are located in between the points at which 
the charge is located. The difference equation used is Gauss’s Law for surfaces: 

E n+1/a - En--1j2 = 4rr u(n). (4) 

Periodic boundary conditions are used, and the overall charge-neutrality of the 
system gives EN+lla = El,, . 

Values of the electric field at the mesh points x = nD are now obtained as the 
simple averages of the values at the neighboring half steps 

En = 46%+1/z + E+I/z). (5) 

The actual electric field that accelerates a macro-particle located at the point x 
is now obtained from the values E,, by linear interpolation between neighboring 
mesh points. For a particle at the point x such that 

n’D < x d (n’ + 1) D, 

tbe electric field is: 

E(x) = E&n’ + 1 - x/D) + En*+l(-n’ + x/D). (6) 

In order to handle the largest number of particles, a simple time integration 
scheme is usually used. The following method, which is obviously time-centered, 
is common: 

Let t = jT, j = integer 

X( jT + T) - X(jT) = TU( jT + $T). 

(7’) 

(8’) 
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This particular form of the equations is, however, inconvenient for analysis. 
In order to avoid the conceptual difficulties involved in following a particle’s 
motion in phase space when its x- and v-coordinates are never defined at the same 
time, an equivalent set of equations is introduced. 

4.b + 7) - u( j7> = (p/m) E[x( j7)l (7) 

X(jT + T) - X(jT) = TU(jT + T). (8) 

This alternate method of writing the equations is, in fact, the way they appear in 
the actual listing of a code when they are used. Thus after evaluating E(x) for a 
given particle, Eq. (7) is used to update the velocity. Then, using the new velocity 
Eq. (8) gives the new position. At this point the cycle or time step is completed 
and the current values of position and velocity are stored for use as input 
parameters for the next step. 

III. DERIVATION OF THE DISPERSION RELATION 

Assume a solution for the E,+&t) of the form 

En+1 l2(t) = EOefoteikz 
= E, eXp[iwjT, + ik(n + 4) D], (9) 

where t = Jo and x = (n + 4) D as before. In a region of length L with periodic 
boundary conditions, k is restricted to k = 2r~jL where K = &-1, f2,..., and 
L = ND. 

Following the procedure outlined in the previous section, the En’s are obtained 

E,, = E, cos(+kD) eiwteiknD. (10) 

To obtain E(x) assume 

E(x) = 2 C,(k) ei2n9zlL. 
p=--m 

(11) 

The C,(k) is then given by: 

C,(k) = L-1 :: ,rI1)D e-i2Wz/LE(X) & (12) 

Now in the range nD < x < (n + 1) D, E(x) is given by Eq. (6) with n = n’. 
Performing the above operations and using the fact that k = ~TK/(ND), one 
obtains the result 

E(x) = Eoefot cos(ikD) f R?efkzz, 
1=--a, 

(13) 
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where 
Rl = sin(&kD)/(jlk,D) 

k, = k + 2d/D. 

(14) 

(15) 

Regarding E(x) as a first-order quantity and linearizing the equations of motion, 
one obtains to zero order 

U&T + 7) - U&T) = 0 (16) 

x0( jT + 7) - x0( jT) = TU,(jT + 7). (17) 

The zero-order motion is thus 

o&7) = uO = constant 

X&T) = jTU0 + x0(O). 

(18) 

(19) 

To first order in E(x) the difference equations for a1 and x1 are 

= (qrE,,/m) cos($kD) i R 2 z exp[iwjT + iklxO(0) + ikp&]. 
Z=-CO 

(20) 

X&T + 7) - x1( jT) = TUl(jT + T). cw 

The usual method of solving the orbit equations involves the use of Laplace 
transforms. The arguments leading to Landau damping then arise from certain 
mathematical requirements which must be satisfied while inverting the transform 
[51. 

A different approach will be introduced here. In it Landau damping arises from 
an infinitesimal resistivity. The “resonant” particles differ from the “bulk” particles 
in that their orbits are dominated by the resistivity rather than inertia. The effect 
remains in the limit of zero resistivity since, although the number of particles 
which are “resonant” goes to zero, the amplitude of their orbits goes to infinity. 

The equations with which we are dealing constitute an idealization of a computer- 
simulated plasma (and a real plasma when appropriate limits are taken) in which 
there exists a small but finite amount of collisional damping. The case of interest 
is the one in which this damping is negligible. Thus a small amount of damping 
will be introduced into the above equations, and the dispersion relation obtained 
in the limit that this damping goes to zero will thus correspond to the case of 
interest. It is convenient to write the damping term in the form: (1 - e-)/T. 
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The first-order equations are now 

ul(j7 + 7) - ulW + (1 - e-9 ulW 

= (qd&/m) cos(ikD) i RI’ exp[iujT + iklxo(0) + ik,u,,jr] 
k-03 

(22) 

Xl(jT + T) - xl(jT) = TUl( jT + T). (23) 

Using difference-equation analogues of the methods for handling similar differential 
equations these equations can be “summed” from t = - co to jT to give: 

(24) 

Xl(jT) = (qT?&h) cos(ikD) 

exp(imjT + ik,x) exp{ido - iy + kp,)} 
[exp{i+ - iy + k,u,)} - I][exp(i+u + k&} - I] * (25) 

A first-order distribution function must now be constructed using these 
expressions for the trajectories. To do this, one makes use of the fact that any 
function of the constants of the motion is itself a constant of the motion. The 
constants of the motion in this case are 

xom = 4.h) - Xl(iT) - jMj4 - S(iT)) (26) 

%O = u(h) - Ul( j,). (27) 

If i;[xdo), Qm1 is the distribution of xd0) and ud0) at t = jT = 0, then 
t;Tx - x, - jvfu - u,), u - ul] is the corresponding distribution of x and u at 
t = jr. Furthermore, if x1 and ul are small 

F = F(x - jm, U) - (xl - jTzQ aqax - ulaF/att. (28) 

Thus one identifies the usual zero and first-order distribution functions: 

fdx, u, t) = F(x - jTU, u). (3 

fl(x, U, t) = -(xl - jTul) aFlax - 4aqau. (W 

In making the coordinate transformation in phase space from (x,,(O), r&O)) to 
(x, u), one must also transform the volume element: dxo(O) &(O) + Ja!x du, 
where J is the Jacobian of the transformation. Since& and fr are usually defined 
such that no Jacobian appears in the expressions for the moments, the function 
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J * F should be used in place of F in Eqs. (29) and (30). In this case as in most, 
however, J = 1 + O(y), and it is convenient to neglect these terms immediately. 

Using (x, u) and (x0, uO) interchangeably in the first-order terms, and confining 
the discussion to a uniform zero-order distribution, (fb(x, u, t) =&(u) only) the 
following expression is obtained for& 

From this quantity the CA@) can be obtained 

And finally combining the results of this operation with Eq. (4) the dispersion 
relation is obtained. 

IV. PROPERTIES OF A SINGLE WAVE IN A MAXWELLIAN PLASMA 

Consider the special case 

j&4 = (Np/L)(~G-1/2 ev(-4~T2), (34) 

where N, is the total number of “macro-particles” in length L. The dispersion 
relation in this case reduces to 

1 + 2 cos(&kD) f R:{ug2/(kIz+)2) W(o, kJ = 0, (35) 
L-cc 

where 
ws2 = 4nq2N,l(mAL), vr2 = 2T/m 

I p W = lim r-112 
Y++o ikklvTTeyT cot{+(w - iy + kp+)} I( exp(-u2) chc (36) 

-m 

The terms RI and kl are defined in Eqs. (14) and (15) and m and q are the amount 
of charge and mass associated with area A on a macro-particle or sheet. 

For real w and kl the function W(w, k,) has both real and imaginary parts. 
The real part is 

Re(W) = 5 72-w lb 4ktvc CotM~ + klw4}(u + 2jb) exp{-(u + 2jb)‘) du, 
k-m -b (37) 
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where b = ?r/(kluT~), and where principal values are taken at the poles. The 
corresponding imaginary part of W is: 

Im(W)= - F 7+/2 (~;~~~)exp[-( “;‘;:,2t!)2]. (38) 
j,-P 

In the cold plasma or hydrodynamic limit, ?T/(++) > o/(kluT) > 1, the 
following approximate expressions are obtained 

(fksw)2 Re( w, g - 2 sin2(+,) - 2(~~~~T) (i - sin2(&07)) 

14 W) g - d2 , k,C(; vT exp - [ ( 

2 

Iklo;vT * )I 

(39) 

w 

V. SUMMARY AND CONCLUSIONS 

A dispersion relation for a computer-simulated plasma has been derived in 
which the effects of discreteness in time and space are included exactly. The method 
is quite general and may be applied to simulation models which contain the effects 
of the complete electromagnetic field, more than one species, higher dimensions 
and different spatial interpolation and time “integration” methods. In the limit 
that the mesh spacing, D, and the time step, T, go to zero independently, the well- 
known results associated with the Vlasov description of a collisionless plasma 
are obtained. 

A finite time step leads to a dispersion relation which has an infinite set of 
solution frequencies for a given k: 

wi = w,(k) + 2nj/r, for j = 0, &I, f2, f3 ,... . 

These frequency aliases arise in the following way. The computational procedure 
requires that all functions of time be evaluated at the discrete points, t = jT. 
What happens in between is ignored. Obviously a number of interpolation schemes 
could be applied to define the quantities at intermediate times. If the interpolation 
schemes are restricted to those involving sine and cosine curves only, an infinite 
set of frequencies can still be used. These frequencies are the frequency “aliases,” 
and all of them except the principal mode (j = 0), lead to interpolation schemes 
which are physically “unreasonable.” 

Numerical difficulties associated with these aliases are easily avoided in practice 
by making the time step short. The condition is 

T < WI w I + I kmax~max I) 

5 W(w, + ~Q-ID), (41) 
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where t’max is the speed of the fastest particle. In practice T must be smaller than 
the above restrictions since substantial numerical dispersion is introduced for 
r g n/w, or r z m/(k maxvm&. Thus to minimize numerical dispersion, one must 
have 

T < +-+, + &D). (42) 

The effect of discreteness in space is quite different from that in time. As in the 
time a density at a discrete set of points, x = nD, is defined and a difference 
equation is used to solve for the electric field at another set of points, x = (n + 4) D. 
At this point, however, the similarities cease, since an interpolation procedure 
between the discrete set of mesh points is introduced. Thus, one is not dealing 
with a principal mode and its aliases, but is, instead, dealing with a very complicated 
mode which can be expressed as a sum over the principal mode and its aliases. 

In a given system the lowest modes are best described. If the number of mesh 
points (N = L/D) is large, both the numerical dispersion and the contributions of 
the “aliases” to the properties of the mode can be made negligible. If one wishes 
a good description of the lowest 1 modes, then 

D < L/(21). (43) 

N > 21. (3 

Of interest, in addition to the above criteria on D and T, is the question of 
numerical instability of any of the modes. An examination of the dispersion 
relation, Eq. (39, and the expression for the imaginary part of W, Eq. (40), shows 
that the total Landau damping of a mode is the sum of the contributions from its 
sinusoidal components. Moreover, the resonant interaction associated with those 
components having a phase velocity in the same direction as the principal 
component lead to damping, while those having a phase velocity in the opposite 
direction lead to growth. For the lower modes, the principal component dominates 
and Landau damping is well described. For higher modes relatively equal 
contribution can come from the backward components, and the possibility of 
instability exists. It is easy to verify that in the case and/ g 3.5, modes in the 
neighborhood of k = Qkmax = 2~/(3D) are unstable. Thus instability can occur 
in parameter ranges of interest. Extensive numerical work is required to delineate 
more completely the unstable parameter ranges. 
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